Раствор сахара формула
Sansara58.ru

Медицинский портал

Раствор сахара формула

Сахароза, свойства, получение и применение

Сахароза, свойства, получение и применение.

Сахароза – дисахарид из группы олигосахаридов, состоящий из двух моносахаридов: α-глюкозы и β-фруктозы, имеющий формулу C12H22O11.

Сахароза, формула, молекула, строение, вещество:

Сахароза – дисахарид из группы олигосахаридов, состоящий из двух моносахаридов: α-глюкозы и β-фруктозы, имеющий формулу C12H22O11.

В быту сахароза именуется сахаром, тростниковым сахаром или свекловичным сахаром.

Олигосахариды – это углеводы, содержащие от 2 до 10 моносахаридных остатков. Дисахариды – углеводы, которые при нагревании с водой в присутствии минеральных кислот или под влиянием ферментов подвергаются гидролизу, расщепляясь на две молекулы моносахаридов.

Сахароза является весьма распространённым в природе дисахаридом и углеводом . Она встречается во многих фруктах, плодах, ягодах, в стеблях и листьях растений , в соке деревьев . Особенно велико содержание сахарозы в сахарной свёкле, сахарном тростнике, сорго, сахарном клене, кокосовой пальме, финиковой пальме, аренге и иных пальмах, которые используются для промышленного производства пищевого сахара.

Химическая формула сахарозы C12H22O11.

Аналогичную общую химическую формулу имеют и другие дисахариды: лактоза, состоящая из остатков глюкозы и галактозы, и мальтоза, состоящая из остатков глюкозы.

Строение молекулы сахарозы, структурная формула сахарозы:

Молекула сахарозы образована из двух остатков моносахаридов – α-глюкозы и β-фруктозы, соединённых между собой атомом кислорода и связанных друг с другом за счёт взаимодействия гидроксильных групп (двух полуацетальных гидроксилов) – (1→2)-гликозидной связью.

Систематическое химическое наименование сахарозы: (2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-дигидрокси-2,5-бис(гидроксиметил)оксолан-2-ил]окси-6-(гидроксиметил)оксан-3,4,5-триол.

Используется также и другое химическое название сахарозы: α-D-глюкопиранозил-β-D-фруктофуранозид.

По внешнему виду сахароза представляет собой белое кристаллическое вещество . На вкус более сладкая, чем глюкоза.

Сахароза очень хорошо растворяется в воде. Малорастворима в этаноле и метаноле. Не растворима в диэтиловом эфире .

Сахароза, попадая в кишечник, под действием ферментов быстро гидролизуется на глюкозу и фруктозу, после чего всасывается и попадает в кровь.

Температура плавления сахарозы 160 °C. Расплавленная сахароза застывает, образуя аморфную прозрачную массу – карамель.

Если расплавленную сахарозу продолжить нагревать, то при температуре 186 °C сахароза разлагается с изменением окраски – с прозрачной на коричневую.

Сахароза служит источником глюкозы и важнейшим источником углеводов для организма человека.

Физические свойства сахарозы:

Наименование параметра: Значение:
Цвет белый, бесцветный
Запах без запаха
Вкус сладкий
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое кристаллическое вещество
Плотность (при 20 °C и атмосферном давлении 1 атм.), г/см 3 1,587
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м 3 1587
Температура разложения, °C 186
Температура плавления, °C 160
Температура кипения, °C
Молярная масса сахарозы, г/моль 342,2965 ± 0,0144

Химические свойства сахарозы. Химические реакции (уравнения) сахарозы:

Основные химические реакции сахарозы следующие:

  1. 1. реакция сахарозы с водой (гидролиз сахарозы):

При гидролизе (при нагревании в присутствии ионов водорода ) сахароза расщепляется на составляющие ее моносахариды за счёт разрыва гликозидных связей между ними. Данная реакция является обратной процессу образования сахарозы из моносахаридов.

Аналогичная реакция происходит в кишечнике у живых организмов при попадании в него сахарозы. В кишечнике сахароза под действием ферментов быстро гидролизуется на глюкозу и фруктозу.

  1. 2. качественная реакция на сахарозу (реакция сахарозы с гидроксидом меди):

В молекуле сахарозы имеется несколько гидроксильных групп. Для подтверждения их наличия используют реакцию с гидроксидами металлов , например, с гидроксидом меди .

Для этого к раствору сахарозы добавляют гидроксид меди . В результате образуется сахарат меди , а раствор окрашивается в ярко-синий цвет.

  1. 3. не дает реакцию «серебряного зеркала»:

Альдегидной группы в сахарозе нет. Поэтому она при нагревании с аммиачным раствором оксида серебра не дает реакцию «серебряного зеркала», т.к. сахароза не способна превращаться в открытую форму, содержащую альдегидную группу.

Кроме того, при нагревании с гидроксидом меди (II) сахароза не образует красного оксида меди (I).

Реакция «серебряного зеркала» и реакция с гидроксидом меди (II) с образованием красного оксида меди (I) характерны для лактозы и мальтозы.

Поэтому сахарозу еще именуют невосстанавливающим дисахаридом, т.к. она не восстанавливает Ag2O и Cu(OH)2.

Получение и производство сахарозы:

Сахароза содержится во многих фруктах, плодах, ягодах, в стеблях и листьях растений , в соке деревьев . Поэтому получение сахарозы связано с выделением ее из ее источников: сахарного тростника, сахарной свеклы и пр.

Получение сахарозы из сахарного тростника:

Сахарный тростник является основной мировой культурой для производства сахара. На его долю приходится до 65 % мирового производства сахара.

Сахарный тростник до начала цветения срезают. Срезанные стебли измельчают и размалывают. Из полученной массы отжимают сок, в котором содержится до 0,03 % белковых веществ, 0,1 % зернистых веществ (крахмала), 0,22 % азотосодержащей слизи, 0,29 % солей (большей частью органических кислот), 18,36 % сахара, 81 % воды и очень небольшое количество ароматических веществ, придающих сырому соку своеобразный запах.

Для очистки сока к нему добавляют свежегашеную известь – Са(ОН)2 и нагревают. Сахароза вступает в химическую реакцию с гидроксидом кальция, в результате чего образуется растворимый в воде сахарат кальция . Кроме того, другие вещества, содержащиеся в соке, также вступают в реакцию с гидроксидом кальция, образуя малорастворимые и нерастворимые соли, которые выпадают в осадок и отфильтровывают.

Затем через раствор, чтобы разложить сахарат кальция и нейтрализовать избыточный гидроксид кальция, пропускают углекислый газ – СО2. В итоге образуется карбонат кальция – СаСО3, который выпадает в осадок. Выпавший в осадок карбонат кальция отфильтровывают, а раствор выпаривают в вакуумных аппаратах до получения кристаллов сахарозы. На данной стадии производства сахароза все еще содержит примеси – мелассу и имеет коричневый цвет. Меласса придает сахарозе ярко выраженный естественный аромат и вкус. Полученный продукт именуется коричневым сахаром или тростниковым нерафинированным сахаром. Он (коричневый сахар) пригоден в пищу. Его можно использовать в пищу как есть либо подвергнуть дополнительной очистке .

На последней стадии производства сахарозу подвергают дополнительной очистке и обесцвечиванию. В конечном итоге получают рафинированный (очищенный) сахар, имеющий белый цвет.

Получение сахарозы из сахарной свеклы:

Сахарная свекла является двухлетним растением. В первый год собирают урожай корнеплодов и отправляют их на переработку.

На перерабатывающей фабрике корнеплоды промываются и измельчаются. Измельченные корнеплоды помещают в диффузоры (большие котлы) с горячей водой температурой 75 о С. Горячая вода вымывает из измельченных корнеплодов сахарозу и прочие компоненты. В итоге получается диффузионный сок, который в дальнейшем подвергается фильтрации от содержащихся в нем частичек мякоти.

На следующих стадиях производства сахара диффузионный сок очищают гидроксидом кальция и углекислым газом, уваривают, выпаривают на вакуумных аппаратах , подвергают дополнительной очистке , отбеливанию и центрифугированию. В итоге получают рафинированный сахар.

Получение сахарозы из сахарного клена:

Сахарозу из сахарного клена получают в восточных провинциях Канады.

В феврале-марте ствол сахарного клена просверливают. Из отверстий вытекает кленовый сок, который собирают . Он содержит до 3 % сахарозы.

Кленовый сок выпаривают, получая «кленовый сироп». Далее «кленовый сироп» очищают гидроксидом кальция и углекислым газом, выпаривают на вакуумных аппаратах, подвергают дополнительной очистке и отбеливанию, тем самым получая готовый продукт – сахар.

Применение сахарозы:

– в качестве продукта питания, а также для приготовления различных продуктов питания (кондитерских изделий, напитков, соусов и пр.)

Читать еще:  Сахароснижающие препараты нового поколения

– в кондитерской промышленности как консервант,

– используется для приготовления искусственного меда,

– в химической промышленности для производства этанола, бутанола, глицерина, лимонной кислоты, декстрана и пр.,

– в фармацевтической промышленности для изготовления различных лекарственных средств.

Раствор сахара формула

Примером наиболее распространенных в природе дисахаридов (олигосахаридом) является сахароза (свекловичный или тростниковый сахар).

Биологическая роль сахарозы

Наибольшее значение в питании человека имеет сахароза, которая в значительном количестве поступает в организм с пищей. Подобно глюкозе и фруктозе сахароза после расщепления ее в кишечнике быстро всасывается из желудочно-кишечного тракта в кровь и легко используется как источник энергии.

Важнейший пищевой источник сахарозы — сахар.

Строение сахарозы

Молекулярная формула сахарозы С12Н22О11 .

Сахароза имеет более сложное строение, чем глюкоза. Молекула сахарозы состоит из остатков молекул глюкозы и фруктозы в их циклической форме. Они соединены друг с другом за счет взаимодействия полуацетальных гидроксилов (1→2) -гликозидной связью, то есть свободный полуацетальный (гликозидный) гидроксил отсутствует:

Физические свойства сахарозы и нахождение в природе

Сахароза (обыкновенный сахар) – белое кристаллическое вещество, более сладкое, чем глюкоза, хорошо растворимое в воде.

Температура плавления сахарозы 160°C. При застывании расплавленной сахарозы образуется аморфная прозрачная масса – карамель.

Сахароза является весьма распространённым в природе дисахаридом, она встречается во многих фруктах, плодах и ягодах. Особенно много ее содержится в сахарной свёкле (16-21%) и сахарном тростнике (до 20%), которые и используются для промышленного производства пищевого сахара.

Содержание сахарозы в сахаре 99,5%. Сахар часто называют «носителем пустых калорий», так как сахар – это чистый углевод и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли.

Химические свойства

Для сахарозы характерны реакции по гидроксильным группам.

1. Качественная реакция с гидроксидом меди (II)

Наличие гидроксильных групп в молекуле сахарозы легко подтверждается реакцией с гидроксидами металлов.

Видеоопыт «Доказательство наличия гидроксильных групп в сахарозе»

Если раствор сахарозы прилить к гидроксиду меди (II), образуется ярко-синий раствор сахарата меди (качественная реакция многоатомных спиртов):

2. Реакция окисления

Восстанавливающие дисахариды

Дисахариды, в молекулах которых сохраняется полуацетальный (гликозидный) гидроксил (мальтоза, лактозы), в растворах частично превращаются из циклических форм в открытые альдегидные формы и вступают в реакции, характерные для альдегидов: реагируют с аммиачным раствором оксида серебра и восстанавливают гидроксид меди (II) до оксида меди (I). Такие дисахариды называются восстанавливающими (восстанавливают Cu (OH)2 и Ag2O).

Реакция «серебряного зеркала»

Реакция с гидроксидом меди (II)

Невосстанавливающий дисахарид

Дисахариды, в молекулах которых нет полуацетального (гликозидного) гидроксила (сахароза) и которые не могут переходить в открытые карбонильные формы, называются невосстанавливающими (не восстанавливают Cu (OH)2 и Ag2O).

Сахароза, в отличие от глюкозы, не является альдегидом. Сахароза, находясь в растворе, не вступает в реакцию «серебряного зеркала» и при нагревании с гидроксидом меди (II) не образует красного оксида меди (I), так как не способна превращаться в открытую форму, содержащую альдегидную группу.

Видеоопыт «Отсутствие восстанавливающей способности сахарозы»

3. Реакция гидролиза

Для дисахаридов характерна реакция гидролиза (в кислой среде или под действием ферментов), в результате которой образуются моносахариды.

Сахароза способна подвергаться гидролизу (при нагревании в присутствии ионов водорода). При этом из одной молекулы сахарозы образуется молекула глюкозы и молекула фруктозы:

Видеоопыт «Кислотный гидролиз сахарозы»

Мальтоза и лактоза при гидролизе расщепляются на составляющие их моносахариды за счёт разрыва связей между ними (гликозидных связей):

Таким образом, реакция гидролиза дисахаридов является обратной процессу их образования из моносахаридов.

В живых организмах гидролиз дисахаридов происходит при участии ферментов.

Получение сахарозы

Сахарную свеклу или сахарный тростник превращают в тонкую стружку и помещают в диффузоры (огромные котлы), в которых горячая вода вымывает сахарозу (сахар).

Вместе с сахарозой в водный раствор переходят и другие компоненты (различные органические кислоты, белки, красящие вещества и др.). чтобы отделить эти продукты от сахарозы, раствор обрабатывают известковым молоком (гидроксидом кальция). В результате этого образуются малорастворимые соли, которые выпадают в осадок. Сахароза образует с гидроксидом кальция растворимый сахарат кальция С12Н22О11·CaO·2Н2О.

Для разложения сахарата кальция и нейтрализации избытка гидроксида кальция через раствор пропускают оксид углерода ( IV).

Выпавший в осадок карбонат кальция отфильтровывают, а раствор упаривают в вакуумных аппаратах. По мере образования кристалликов сахара отделяют с помощью центрифуги. Оставшийся раствор – меласса – содержит до 50% сахарозы. Его используют для производства лимонной кислоты.

Выделенную сахарозу очищают и обесцвечивают. Для этого ее растворяют в воде и полученный раствор фильтруют через активированный уголь. Затем раствор снова упаривают и кристаллизуют.

Применение сахарозы

Сахароза в основном используется как самостоятельный продукт питания (сахар), а также при изготовлении кондитерских изделий, алкогольных напитков, соусов. Ее используют в высоких концентрациях в качестве консерванта. Путем гидролиза из нее получают искусственный мёд.

Сахароза находит применение в химической промышленности. С помощью ферментации из нее получают этанол, бутанол, глицерин, левулиновую и лимонную кислоты, декстран.

В медицине сахарозу используют при изготовлении порошков, микстур, сиропов, в том числе для новорожденных детей (для придания сладкого вкуса или консервации).

Сахароза

При гидролизе октаметилсахарозы (I) получены тетраметилглюкоза (II) и тетраметилфруктоза (III), что подтверждает принадлежность сахарозы к дисахаридам группы трегалозы. Полученная тетраметилглюкоза (II) оказалась 2,3,4,6-тетраметилглюкопиранозой, так как при окислении она давала триметоксиглутаровую кислоту (IV), а при ее метилировании получался тетраметилметилглюкозид, тождественный получаемому при метилировании обычного α-метилглюкопиранозида. Тетраметилфруктоза (III) оказалась 1,3,4,6-тетраметилфруктофуранозой, так как при различных условиях окисления она давала γ-лактон триметоксиксилоновой кислоты (V) и диметилвинную кислоту (VI) Все это видно из приводимой схемы:

Наличие в сахарозе остатка фруктозы в виде не шестичленного, а пятичленного кольца вначале показалось неожиданным, так как для всех свободных гексоз, в том числе и для свободной фруктозы, было установлено наличие шестичленного кольца. Пришлось допустить, что образующаяся при гидролизе сахарозы фруктофураноза частично изомеризуется во фруктопиранозу. В дальнейшем было показано, что и в других сложных сахарах фруктоза обычно присутствует в виде пятичленного цикла.

Строение сахарозы в последние годы было подтверждено методом периодат-ного окисления, при котором на окисление сахарозы расходуется 3 моль HJО4 и образуется 1 моль муравьиной кислоты:

При этом вовсе не образуется формальдегида, что в свою очередь свидетельствует о том, что ни в одном из остатков моносахарида нет свободного гидроксила в пятом положении.

Тростниковый сахар был известен за много столетий до нашей эры. Он является одним из важнейших пищевых продуктов, обладает консервирующими свойствами, широко распространен в растительном мире. Листья и семена всегда содержат небольшие количества тростникового сахара. Он находится также в плодах, часто вместе с монозами, например в абрикосах, персиках, грушах, ананасе и пр. В особенно большом количестве, он содержится в корнеплодах сахарной свеклы (до 27%, в среднем 16—20%), в стеблях сахарного проса (сорго) и сахарного тростника (в соке 14—26%), из которых он и добывается заводским способом.

Читать еще:  Работа при сахарном Болезние 1 типа

В промышленности тростниковый сахар получают из сахарной свеклы следующим образом. Сахарную свеклу разрезают на тонкие стружки и извлекают сахар и другие растворимые вещества горячей водой (диффузия). Получаемый раствор, содержащий 1215% сахара, обрабатывают известью (дефекация). При этом нейтрализуются и частью осаждаются свободные кислоты (щавелевая, лимонная), а также фосфаты, белковые и красящие вещества свеклы. Раствор, содержащий избыток извести, обрабатывают углекислотой (сатурация). Образующийся карбонат кальция, адсорбировавший примеси, отделяют на вакуум-фильтре, после чего раствор подвергают повторной дефекации и сатурации. Очищенный раствор упаривают в вакуум-аппаратах. Сахар выделяется из охлажденного раствора в виде мелких кристаллов, которые центрифугированием отделяют от маточного раствора. Повторным сгущением и кристаллизацией маточного раствора выделяют остаток сахара, после чего остается некристаллизующаяся густая масса, называемая кормовой патокой или меляссой. В меляссе содержится некоторое количество сахара, а также различные безазотистые и азотсодержащие примеси (из последних особенно важен бетаин). Полученный таким образом сырой сахарный песок подвергают очистке (рафинированию). Для этого его растворяют в воде, раствор фильтруют через животный или древесный активированный уголь и упаривают до кристаллизации.

Тростниковый сахар может быть получен в виде больших прозрачных кристаллов моноклинной системы. Он чрезвычайно хорошо растворим в воде, особенно в горячей, и легко дает густые пересыщенные растворы (сиропы). Физические свойства растворов тростникового сахара хорошо известны; на них проверялись и устанавливались физико-химические законы для растворов.

Растворы тростникового сахара не обнаруживают мутаротации, что находится в соответствии с его строением. Величина удельного вращения плоскости поляризации в водных растворах тростникового сахара довольно постоянна и может использоваться для определения концентрации растворов сахара. При содержании 30 г сахара в 100 мл раствора [α]D 20 =+66,5°.

Тростниковый сахар кристаллизуется в двух модификациях. Одна из них. получающаяся из большинства растворителей, плавится при 185° С с небольшим разложением; вторая модификация, получаемая кристаллизацией из метилового спирта, плавится при 170° С. Обычно препараты сахарозы имеют т. пл. от 160 до 185° С, в зависимости от способа очистки; при охлаждении они застывают в аморфную стекловидную массу. При более высоких температурах сахароза буреет, разлагаясь с выделением воды и образуя так называемую карамель смесь некристаллизующихся веществ. При дальнейшем нагревании карамель обугливается, выделяя пары и газы.

Тростниковый сахар не восстанавливает фелинговой жидкости, не реагирует с фенилгидразином и не изменяется от действия разбавленных щелочей. При гидролизе под действием кислот или энзимов, например диастаза или содержащейся в дрожжах спиртового брожения инвертазы, он распадается (превращается, или «инвертируется»), образуя смесь равных количеств D-глюкозы и D-фруктозы, называемую инвертным сахаром. Инвертный сахар вращает плоскость поляризации влево, так как левое вращение фруктозы больше правого вращения глюкозы.

С основаниями тростниковый сахар дает сахараты. Различная растворимость сахаратов щелочноземельных металлов (в частности, кальция) используется для выделения сахара из растворов. Моносахарат кальция C12H22O11 ∙ СаО ∙ 2Н2О и дисахарат кальция C12H22O11 ∙ 2СаО легко растворимы в воде; при кипячении же из растворов выпадает в осадок трудно растворимый трисахарат C12H22O11 ∙ 3СаО ∙ 3Н2О.

При действии уксусного ангидрида на тростниковый сахар получается октаацетилсахароза C12H14O3(OCOCH3)8, имеющая т. пл. 67° С; она обладает горьким вкусом.

Синтез тростникового сахара. Химический синтез тростникового сахара является одной из наиболее трудных проблем химии сахаров, не разрешенной до настоящего времени. В литературе неоднократно появлялись сообщения о синтезе сахарозы, но в дальнейшем либо описанные синтезы не могли быть воспроизведены, либо при детальном изучении продукта оказывалось, что получена не сахароза, а ее стереоизомер. Особой трудностью этого синтеза является то, что компоненты сахарозы — глюкоза и фруктоза, находясь в виде фиксированных α- и β-гликозидных остатков, могут дать четыре сочетания α-α’, α-β’ β-β’ и β-α’, причем остаток фруктозы должен войти в виде лабильного пятичленного кольца. Один из этих изомеров — изосахарозу, или 2-(β-глюкозидо)-α-фруктозид — получил Пикте.

Ферментативный синтез сахарозы был проведен А. И. Опариным и А. Л. Курсановым в 1928 г. В 1942 г. ферментативным синтезом удалось получить синтетическую сахарозу в кристаллическом состоянии.

Раствор сахара формула

Примером наиболее распространенных в природе дисахаридов (олигосахаридом) является сахароза (свекловичный или тростниковый сахар).

Биологическая роль сахарозы

Наибольшее значение в питании человека имеет сахароза, которая в значительном количестве поступает в организм с пищей. Подобно глюкозе и фруктозе сахароза после расщепления ее в кишечнике быстро всасывается из желудочно-кишечного тракта в кровь и легко используется как источник энергии.

Важнейший пищевой источник сахарозы — сахар.

Строение сахарозы

Молекулярная формула сахарозы С12Н22О11 .

Сахароза имеет более сложное строение, чем глюкоза. Молекула сахарозы состоит из остатков молекул глюкозы и фруктозы в их циклической форме. Они соединены друг с другом за счет взаимодействия полуацетальных гидроксилов (1→2) -гликозидной связью, то есть свободный полуацетальный (гликозидный) гидроксил отсутствует:

Физические свойства сахарозы и нахождение в природе

Сахароза (обыкновенный сахар) – белое кристаллическое вещество, более сладкое, чем глюкоза, хорошо растворимое в воде.

Температура плавления сахарозы 160°C. При застывании расплавленной сахарозы образуется аморфная прозрачная масса – карамель.

Сахароза является весьма распространённым в природе дисахаридом, она встречается во многих фруктах, плодах и ягодах. Особенно много ее содержится в сахарной свёкле (16-21%) и сахарном тростнике (до 20%), которые и используются для промышленного производства пищевого сахара.

Содержание сахарозы в сахаре 99,5%. Сахар часто называют «носителем пустых калорий», так как сахар – это чистый углевод и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли.

Химические свойства

Для сахарозы характерны реакции по гидроксильным группам.

1. Качественная реакция с гидроксидом меди (II)

Наличие гидроксильных групп в молекуле сахарозы легко подтверждается реакцией с гидроксидами металлов.

Видеоопыт «Доказательство наличия гидроксильных групп в сахарозе»

Если раствор сахарозы прилить к гидроксиду меди (II), образуется ярко-синий раствор сахарата меди (качественная реакция многоатомных спиртов):

2. Реакция окисления

Восстанавливающие дисахариды

Дисахариды, в молекулах которых сохраняется полуацетальный (гликозидный) гидроксил (мальтоза, лактозы), в растворах частично превращаются из циклических форм в открытые альдегидные формы и вступают в реакции, характерные для альдегидов: реагируют с аммиачным раствором оксида серебра и восстанавливают гидроксид меди (II) до оксида меди (I). Такие дисахариды называются восстанавливающими (восстанавливают Cu (OH)2 и Ag2O).

Реакция «серебряного зеркала»

Реакция с гидроксидом меди (II)

Невосстанавливающий дисахарид

Дисахариды, в молекулах которых нет полуацетального (гликозидного) гидроксила (сахароза) и которые не могут переходить в открытые карбонильные формы, называются невосстанавливающими (не восстанавливают Cu (OH)2 и Ag2O).

Сахароза, в отличие от глюкозы, не является альдегидом. Сахароза, находясь в растворе, не вступает в реакцию «серебряного зеркала» и при нагревании с гидроксидом меди (II) не образует красного оксида меди (I), так как не способна превращаться в открытую форму, содержащую альдегидную группу.

Видеоопыт «Отсутствие восстанавливающей способности сахарозы»

Читать еще:  Сахарный Болезни 2 типа картинки

3. Реакция гидролиза

Для дисахаридов характерна реакция гидролиза (в кислой среде или под действием ферментов), в результате которой образуются моносахариды.

Сахароза способна подвергаться гидролизу (при нагревании в присутствии ионов водорода). При этом из одной молекулы сахарозы образуется молекула глюкозы и молекула фруктозы:

Видеоопыт «Кислотный гидролиз сахарозы»

Мальтоза и лактоза при гидролизе расщепляются на составляющие их моносахариды за счёт разрыва связей между ними (гликозидных связей):

Таким образом, реакция гидролиза дисахаридов является обратной процессу их образования из моносахаридов.

В живых организмах гидролиз дисахаридов происходит при участии ферментов.

Получение сахарозы

Сахарную свеклу или сахарный тростник превращают в тонкую стружку и помещают в диффузоры (огромные котлы), в которых горячая вода вымывает сахарозу (сахар).

Вместе с сахарозой в водный раствор переходят и другие компоненты (различные органические кислоты, белки, красящие вещества и др.). чтобы отделить эти продукты от сахарозы, раствор обрабатывают известковым молоком (гидроксидом кальция). В результате этого образуются малорастворимые соли, которые выпадают в осадок. Сахароза образует с гидроксидом кальция растворимый сахарат кальция С12Н22О11·CaO·2Н2О.

Для разложения сахарата кальция и нейтрализации избытка гидроксида кальция через раствор пропускают оксид углерода ( IV).

Выпавший в осадок карбонат кальция отфильтровывают, а раствор упаривают в вакуумных аппаратах. По мере образования кристалликов сахара отделяют с помощью центрифуги. Оставшийся раствор – меласса – содержит до 50% сахарозы. Его используют для производства лимонной кислоты.

Выделенную сахарозу очищают и обесцвечивают. Для этого ее растворяют в воде и полученный раствор фильтруют через активированный уголь. Затем раствор снова упаривают и кристаллизуют.

Применение сахарозы

Сахароза в основном используется как самостоятельный продукт питания (сахар), а также при изготовлении кондитерских изделий, алкогольных напитков, соусов. Ее используют в высоких концентрациях в качестве консерванта. Путем гидролиза из нее получают искусственный мёд.

Сахароза находит применение в химической промышленности. С помощью ферментации из нее получают этанол, бутанол, глицерин, левулиновую и лимонную кислоты, декстран.

В медицине сахарозу используют при изготовлении порошков, микстур, сиропов, в том числе для новорожденных детей (для придания сладкого вкуса или консервации).

Сахароза (Энциклопедия)

Для нормального питания взрослого мужчины, не обремененного большой физической работой, требуется принимать в сутки объем пищи, питательная энергетическая ценность (калорийность) которой составляет примерно 3000 ккал. Этому соответствует прием следующего количества основных питательных веществ (в чистом виде): 100 г белков (калорийность 1 г – 4,8 ккал, или 20,1 кДж), 100 г жиров (калорийность 9,3 ккал/г) и 400 г углеводов (калорийность 4 ккал/г).

По калорийности углеводы уступают белкам и жирам, но в суточном рационе человека суммарная калорийность углеводов составляет более половины, а по объему пищи – около двух третей. Именно углеводы являются основным источником энергии для организма человека.

Главный углевод в питании человека – нерастворимый в воде полисахарид крахмал (в хлебном зерне, картофеле и т.п.) – для усвоения в организме должен быть прежде всего разложен на моносахариды и переведен в раствор (это производится ферментами слюны и желудочного сока), на что требуется время. Растворимый же углевод – дисахарид сахароза, или обычный сахар, разлагается на моносахариды (глюкозу и фруктозу) и усваивается значительно быстрее крахмала, поэтому человек так охотно заменяет в своем питании часть крахмала сахаром, имеющим, кроме того, сладкий вкус. Для быстрого восстановления затраченной энергии (при походах, спорте, большой физической работе, для больных и выздоравливающих) сахар как питательное вещество особенно ценен по быстроте и легкости его усваивания.

Благодаря ценным пищевым, вкусовым и физическим свойствам сахароза (сахар) сделалась важнейшим пищевым продуктом первой необходимости.

Быстрая усвояемость сахарозы, однако, не позволяет пользоваться ею как единственным пищевым углеводом. Сравнительно медленно переваривающийся крахмал равномерно снабжает кровь глюкозой. Потребление же сахарозы в значительных дозах перегружает кровь глюкозой, которая в этом случае начинает перерабатываться в жиры, т.е. начинается ожирение организма. Поэтому определено, что лишь до 20 % требуемого количества углеводов может быть потреблена в виде сахара. Таким образом, в сутки допустимо потреблять примерно 80 г сахара во всех его видах (в натуре, в кондитерских изделиях, в напитках и т.п.), что составляет около 30 кг сахара в год.

Обычный сахар, который мы покупаем в магазине, более чем на 99,7 % состоит из сахарозы.

САХАРОЗА принадлежит к большому классу естественных органических веществ, называемых углеводами (соединениями атомов углерода и молекул воды ) с общей формулой: Cm(H2O)n

К этому классу относятся более или менее сладкие на вкус сахара как моносахариды (например, глюкоза и фруктоза), так и олигосахариды (например, сахароза и раффиноза), а также полисахариды (например, целлюлоза и крахмал).

Сахароза (тростниковый, свекловичный сахар) представляет собой дисахарид с общей эмпирической формулой С12Н22О11 , состоящий из двух равный частей моносахаридов: d-глюкозы и d-фруктозы. Эти моносахариды соединяются друг с другом глюкозидными группами: глюкоза в a -конфигурации и фруктоза в b -конфигурации. В молекуле сахарозы глюкоза находится в форме пиранозы (кольцо пирана), а фруктоза – в фуранозидной форме (кольцо фурана). Таким образом, сахароза – это a -d-глюкопиранозил- b -d-фруктофуранозид.

Рисунок 1 Форма кристалла сахарозы

Молекулярная масса сахарозы – 342,296. Молекула сахарозы содержит 42,11% углерода, 6,43 % водорода и 51,46 % кислорода.

Сахароза является кристаллическим веществом, молекулярное строение которого имеет закономерную для него специальную решетку.

Нормальный, выращенный в чистом растворе кристалл сахарозы имеет сложную многогранную (15 и более граней) форму.

Рисунок 2 Различные формы кристаллов сахара

Известны 15 видов кристаллов сахарозы, часто наблюдаются двойниковые кристаллы, форма кристаллов зависит от условий процесса кристаллизации, примесей в исходном растворе и степени пересыщения сахарозой этого раствора.

Плотность кристаллов сахарозы без включений при 20 о С – 1,5915 г/см 3 , удельный объем – 0,628 см 3 /г .

Кристаллы размером 1,5-2,5 мм относятся к крупной фракции, размером 0,5-1,5 мм – к средней, размером до 0,5 мм – к мелкой.

В 1 г содержится примерно следующее количество кристаллов сахарозы:

крупная фракция 1,5 тыс. шт.
средняя фракция 3 тыс. шт.
мелкая фракция 5 тыс. шт.

Чистые кристаллы сахарозы прозрачны и бесцветны. При раздавливании кристаллы сахарозы дают очень яркие вспышки кристаллолюминисценции. Кристалл сахарозы – изолятор. Объемное термическое расширение сахарозы составляет 0,00011 % на 1°С .

Чистые растворы сахарозы не электропроводны и химически нейтральны, т.е. их рН=7.

В водных растворах сахароза под влиянием кислот, присоединяя воду, расщепляется (процесс инверсии) на свои составные части – глюкозу и фруктозу.

Под действием некоторых ферментов, дрожжей, плесени и бактерий сахароза также разлагается на глюкозу и фруктозу.

Растворимость сахарозы в чистой воде значительна и быстро растет с повышением температуры. В этиловом и метиловом спиртах сахароза практически не растворяется.

Сахароза плавится при температуре 186-188°С, происходит т.н. “кара-мелизация” сахарозы, или образование сложных, окрашенных в бурый цвет горького вкуса веществ.

Химически чистую сахарозу для научных исследований готовят, растворяя в дистиллированной воде лучший рафинированный товарный сахар с последующим осаждением безводным этиловым спиртом, причем этот процесс повторяют несколько раз.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]