Инсулин главным образом воздействует на обмен
Параграф 102 инсулин
Автор текста Анисимова Е.С.
Авторские права защищены. Продавать текст нельзя.
Курсив не учить.
Замечания можно присылать по почте: [email protected]
https://vk.com/bch_5
См. сначала п.30-35, 37, 44-49, 66, 72, затем 103.
Сокращение: Ин – инсулин.
ПАРАГРАФ 102:
«Инсулин.»
Содержание параграфа:
102. 1. МЕТАБОЛИЗМ ИНСУЛИНА.
102. 2. РЕГУЛЯЦИЯ секреции Ин.
102. 3. МЕХАНИЗМЫ ДЕЙСТВИЯ ИН.
102. 4. Влияние инсулина на ОКИСЛИТЕЛЬНЫЙ обмен.
102. 5. Влияние Ин на УГЛЕВОДНЫЙ ОБМЕН.
102. 6. Влияние Ин на ЛИПИДНЫЙ ОБМЕН.
102. 7. Влияние Ин на БЕЛКОВЫЙ ОБМЕН.
Другие эффекты инсулина.
102. 1. МЕТАБОЛИЗМ ИНСУЛИНА.
Инсулин (Ин) секретируется в кровь ;-клетками ПЖЖ,
циркулирует в крови в течение нескольких минут,
связывается со своими рецепторами на поверхности клеток,
захватывается клетками печени, в которой метаболизируется.
Молекула инсулина представляет собой два пептида,
связанных двумя дисульфидными связями;
один пептид состоит из 21 аминоацила и называется А-цепью,
а второй пептид состоит из 30-ти аминоацилов и называется В-цепью.
(В А-цепи есть внутренняя дисульфидная связь:
таким образом, всего в молекуле инсулина три S-S связи и 51 аминоацил).
Формально инсулин является пептидом, так как содержит менее 100 аминоацилов,
но по свойствам инсулин является образцовым белком.
Как и все белково-пептидные гормоны, инсулина образуется путем отщепления пептидов
от белка-предшественника (то есть путем ограниченного протеолиза).
При образовании инсулина происходит отщепление двух пептидов –
первый отщепляемый пептид называется лидерным пептидом или сигнальным пептидом («сигналом»),
его отщепление происходит под действием сигнальной пептидазы
после проникновения синтезируемой ППЦ в полость ЭПС – п.83,
(функция сигнального пептида заключалась в том, чтобы ППЦ проникла в полость ЭПС).
Второй отщепляемый пептид называется С-пептидом и отщепляется позже, в везикулах.
Предшественник инсулина называется пре/про/инсулином.
Приставка пре- обозначает наличие лидерного пептида,
а приставка про- обозначает наличие С-пептида.
Таким образом, при отщеплении лидерного пептида от пре/про/инсулина образуется проинсулин,
а при отщеплении С-пептида от проинсулина образуется инсулин.
(Пре/про/инсулин – лидерный пептид = проинсулин,
проинсулин – С-пептид = инсулин).
Пре/про/инсулин, как и все белки, образуется из аминокислот в процессе трансляции мРНК.
Кроме отщепления пептидов, при образовании Ин происходит образование трех S-S связей.
Для секреции инсулина нужны ионы цинка.
Секреция инсулина происходит так же, как и секреция других белков:
везикулы с молекулами Ин подходят к внешней мембране,
мембрана везикул «сливается» с ЦПМ,
в результате чего содержимое везикулы (в данном случае молекулы инсулина) оказываются вне клетки.
Затем молекулы Ин поступают в кровь и с током крови доставляются к клеткам-мишеням.
102. 2. РЕГУЛЯЦИЯ секреции Ин.
Секреция Ин увеличивается при гипергликемии
и снижается при гипогликемии.
Потому что одна из задач инсулина – снижать [глюкозы] в крови
(то есть оказывать гипогликемическое действие).
Известно, что при гипер/гликемии увеличивается стабильность мРНК
пре/про/инсулина (это способствует образованию новых молекул Ин).
Освобождению инсулина способствует лептин (п.99) –
гормон, который вырабатывается клетками белой жировой ткани (адипоцитами).
Это важно, т.к. при дефиците лептина или его СТС возникают симптомы недостаточности инсулина.
Для помощи таким пациентам с недостаточностью лептина применяют генно-инженерный лептин.
На освобождение Ин влияют катехоламины (п.106):
через ;2-рецепторы катехоламины снижают освобождение инсулина,
а через ;2-рецепторы КА (адреналин) увеличивают освобождение инсулина.
102. 3. МЕХАНИЗМЫ ДЕЙСТВИЯ инсулина (п.98).
Как и все гормоны, Ин в первую очередь связывается со своими рецепторами.
Рецептор инсулина относится к ферментным рецепторам.
При связывании инсулина с рецептором происходит активация тирозин/киназы (ТК)
(ТК является частью того же белка, что и рецептор,
но ТК находится на внутренней стороне мембраны).
Активированная ТК фосфорилирует белки:
белок Ras и киназу, превращающую ФИФ2 в ФИФ3.
ФИФ3 и активированный Ras активируют каскады протеин/киназ.
Активация каскада ПК белком Ras приводит
к активации ряда транскрипционных факторов, способствующих:
1) синтезу белков,
2) росту клеток
3) и делению клеток (пролиферации).
Эти эффекты способствуют заживлению, обновлению клеток,
поэтому при нарушении этих эффектов инсулина (при СД) заживление замедляется.
Активация каскада ПК под действием ФИФ3 способствует поступлению глюкозы в клетки из крови
(это способствует снижению [глюкозы] в крови, то ест гипогликемии)
и использованию глюкозы в клетках
(гликолизу, синтезу гликогена (в печени и мышцах),
превращению излишка глюкозы в жир и т.д.).
ВЛИЯНИЕ инсулина на метаболизм.
(Эффекты инсулина).
Инсулин влияет не на все клетки.
Ткани, на которые инсулин не влияет, называются инсулин-нечувствительными;
к ним относятся нейроны, глаз, почки, эритроциты.
Ткани, на которые инсулин влияет, называются инсулин-чувствительными.
К инсулин-чувствительным тканям относятся:
мышечная, жировая, соединительная ткани, печень.
Инсулин влияет на обмен всех 4-х основных классов веществ. –
102. 4. Влияние инсулина на ОКИСЛИТЕЛЬНЫЙ обмен.
Инсулин обеспечивает выработку АТФ за счет поддержания активности ЦТК.
Выработка АТФ дает ощущение наличия сил и сами силы, работоспособность.
Инсулин поддерживает ЦТК за счет:
снабжения ЦТК субстратами первой реакции:
ацетилКоА и оксалоацетатом.
Концентрацию ацетилКоА инсулин поддерживает за счет активации ПДГ
(ПДГ – это фермент (Е-комплекс) реакции, в которой образуется ацетилКоА),
концентрацию оксалоацетата инсулин поддерживает за счет торможения ГНГ
(это процесс, который мог бы использовать ОА,
если бы инсулин не снизил активность ГНГ).
Кроме этого, инсулин поддерживает активность ЦТК за счёт снижения концентрации НЭЖК,
которые могли бы снизить активность ЦТК.
102. 5. Влияние инсулина на УГЛЕВОДНЫЙ ОБМЕН.
Главное, что нужно помнить – инсулин снижает концентрацию глюкозы в крови,
то есть приводит к гипогликемии.
Из-за этого инсулин называется гипогликемическим гормоном.
Инсулин является единственным гипогликемическим гормоном,
и именно поэтому дефицит инсулина (или его действия)
приводит к повышению концентрации глюкозы в крови («сахар в крови»)
при недостаточности инсулина при сахарном диабете.
Гипогликемическое действие инсулина основано
1) на торможении инсулином процессов, в которых образуется глюкоза
(ГНГ и распада гликогена = гликогенолиза),
2) и на стимуляции процессов, в которых используется глюкоза
(гликолиза, аэробного окисления глюкозы, ПФП,
синтеза гликогена, превращения глюкозы в жиры).
Стимуляция гликолиза и окисления глюкозы приводит
не только к гипогликемии,
но и к образованию метаболитов ЦТК, а далее –
1) к выработке АТФ (это нужно для работоспособности деления клеток) и
2) некоторых аминокислот для синтеза белков.
Стимуляция ПФП повышает выработку и количество НАДФН и Р-5-Ф.
НАДФН нужен для:
1) для антиокислительной системы
(она замедляет старение,
препятствует атеросклерозу,
поддерживание прозрачность хрусталика )замедляет развитие его помутнения – катаракты),
защищает от разрушения лейкоциты и нейроны,
обеспечивает устойчивость эритроцитов к гемолизу и т.д.),
2) для процессов гидроксилирования (при синтезе стероидов и др.),
3) для синтеза жирных кислот, холестерина, ДНК (дезоксинуклеотидов).
Р-5-Ф нужен для синтеза РНК и ДНК –
это нужно для деления клеток и синтеза белков (мышечных).
Деление клеток нужно
при росте,
заживлении,
кроветворении,
обновлении клеток кожи и слизистой ЖКТ и т.д..
Синтез белка нужен для деления клеток, для увеличения мышечной массы, роста, для получения пищеварительных ферментов, белков плазмы крови, в т.ч. антител.
При СД из-за недостаточности влияния инсулина
снижена активность ПФП, что приводит к недостаточной выработке Р-5-Ф и НАДФН,
что приводит к снижению деления клеток, замедлению заживления, катаракте и т.д.
102. 6. Влияние Ин на ЛИПИДНЫЙ ОБМЕН.
Главное: инсулин препятствует худобе и кетоацидозу.
Ин препятствует худобе за счет
1) стимуляции синтеза жира и жирных кислот и
2) за счет торможения распада жира (липолиза) и жирных кислот (;-окисления).
Ин препятствует кетоацидозу
(то есть снижению рН при накоплении кетоновых тел) за счет
1) снижения синтеза кетоновых тел (кетогенеза) и
2) за счет снижения липолиза и ;-окисления,
т.к. именно липолиз и бета-окисление являются главными источниками ацетилКоА для синтеза кетоновых тел.
При недостаточности инсулина при сахарном диабете
концентрация кетоновых тел повышается,
что создает угрозу для жизни (риск кетоацидотическй комы)
и требует срочного введения инсулина для снижения кетогенеза и снижения концентрации кетоновых тел.
Влияние Ин на синтез холестерина и развитие атеросклероза.
Инсулин снижает риск развития атеросклероза,
поэтому при СД атеросклероз развивается быстро и является самым проблем из отдаленных осложнений СД (т.к. чаще других осложнений приводит к смерти).
Инсулин замедляет развитие атеросклероза за счет снижения уровня атерогенных ЛПНП
за счет ускорения их поступления из крови в клетки
за счет увеличения количества рецепторов к липопротеинам.
А также за счет снижения перекисного окисления липопротеинов
за счёт увеличения инсулином активности ПФП, образования НАДФН, работы антиокислительной системы.
При дефиците инсулина при сахарном диабете все наоборот – скорость развития атеросклероза повышается
за счёт повышения концентрации атерогенных липопротеинов
из-за снижения скорости поступления липопротеинов из крови в клетки
из-за снижения количества рецепторов к липопротеинам
и из-за снижения работы антиокислительной системы.
Синтез холестерина инсулин увеличивает,
но за счет ускорения захвата липопротеинов клетками инсулин не приводит к повышению уровня холестерина и атерогенных ЛПНП в крови.
102. 7. Влияние Ин на БЕЛКОВЫЙ ОБМЕН.
Ин стимулирует синтез белка и подавляет катаболизм белков.
Следствием этого является снижение [аммиака], что позволяет обойтись без активного синтеза мочевины.
Снижение синтеза мочевины приводит к снижению остаточного азота.
Синтезу белка способствуют такие эффекты Ин, как
1) увеличение транспорта аминокислот в клетку,
2) секреция желудочного сока (в желудке перевариваются в основном белки, что способствует образованию АК),
3) поддержка ЦТК, т.к. это дает аминокислоты (мономеры для синтеза белка)
и АТФ для синтеза белка,
4) стимуляция ПФП (он дает Р-5-Ф для синтеза РНК перед синтезом белка).
О значении синтез белка сказано выше.
Другие эффекты Ин.
Инсулин увеличивает:
1) транспорт нуклеозидов в клетку,
2) синтез РНК (транскрипцию сотен генов) для синтеза белков,
3) пролиферацию,
4) задерживает ионы калия в клетке (К+ способствует таким эффектам Ин, как усвоение Г и синтез белков).
Влияние инсулина на обмен углеводов
Химическая структура и синтез инсулина
Инсулин человека представляет собой молекулу белка с молекулярной массой 5808. Он состоит из двух аминокислотных цепочек , соединенных между собой дисульфидными связями. Если эти связи разрушить, разъединив таким образом цепочки аминокислот, инсулин утратит свою активность.
Инсулин синтезируется в бета-клетках островков Лангерганса обычным механизмом синтеза белка . Трансляция инсулина начинается на рибосомах с образованием препрогормона инсулина. Этот исходный препрогормон с молекулярной массой 11500 в эндоплазматическом ретикулуме расщепляется до проинсулина с молекулярной массой около 9000. Далее в аппарате Гольджи большая его часть дробится на инсулин, упаковываются в секреторные гранулы, и пептидный фрагмент. Однако почти ⅙ часть конечного секретируемого продукта остается в форме проинсулина. Проинсулин является неактивной формой гормона.
В крови инсулин циркулирует в несвязанной форме, время его полувыведения составляет всего около 6 мин, поэтому плазма практически полностью освобождается от инсулина за 10-15 мин. Оставшаяся несвязанной с рецепторами клеток-мишеней часть инсулина разрушается главным образом в печени ферментом инсулиназой; в меньшей степени разрушение инсулина происходит в почках и мышцах; совсем небольшая часть — в других тканях. Такое быстрое очищение плазмы от инсулина очень важно, т.к.иногда быстрое прекращение регуляторных влияний инсулина не менее существенно, чем их включение.
Активация инсулином рецепторов клеток- мишеней ( см. приложение схема 1)
Для воздействия на клетку-мишень инсулин прежде всего связывается и активирует рецептор, расположенный на мембране клеток, — белок с молекулярной массой около 300000.Активация
рецептора сопровождается определенной последовательностью реакций. Рецептор инсулина состоит из 4 субъединиц, связанных дисульфидными связями: 2 альфа субъединицы располагаются практически снаружи мембраны и 2 бета-субъединицы прободают мембрану и продолжаются в цитоплазму. Инсулин взаимодействует с двумя наружными субъединицами, но благодаря существенным собственным связям субъединиц между собой внутренние бета-субъединицы при этом аутофосфорилируются, поэтому инсулиновый рецептор является
примером энзим-связанного рецептора. Аутофосфорилирование бета-субъединиц
рецептора приводит к местной активации тирозинкиназы,которая в итоге вызывает фосфорилирование многих других внутриклеточных ферментов, включая группу, названную субстратами инсулин-рецептора. Различные типы СИР представлены в различных клетках. Система действует, активируя одни ферменты одновременно с инактивацией других. Таким образом, инсулин управляет внутриклеточными метаболическими механизмами, вызывая желательные реакции обмена белков, жиров и углеводов.
Влияние инсулина на обмен углеводов
Сразу после потребления пищи, богатой углеводами, глюкоза, всасываясь в кровь, стимулирует секрецию инсулина. Инсулин, в свою очередь, повышает поступление, хранение и использование глюкозы почти всеми тканями организма, особенно мышцами, жировой тканью и печенью.Одним из наиболее важных влияний инсулина является депонирование в печени всасываемой после приема пищи глюкозы в виде гликогена..В промежутках между приемами пищи, когда нет поступлений питательных веществ и концентрация глюкозы в крови начинает снижаться, параллельно быстро снижается секреция инсулина. Гликоген в печени начинает распадаться до глюкозы, которая высвобождается в кровь и препятствует падению концентрации глюкозы до слишком низкого уровня.
Механизм, с помощью которого инсулин обеспечивает поступление и депонирование
I. Инсулин инактивирует фосфорилазу печени—основной фермент, способствующий распаду гликогена печени до глюкозы.
2.Инсулин обеспечивает усиление поступления глюкозы из крови в клетки печени. Это достигается увеличением активности фермента глюкокиназы
3. Инсулин также увеличивает активность ферментов, обеспечивающих синтез гликогена, особенно гликогенсинтетазы
Механизм высвобождения глюкозы из печени в кровоток:
1. Снижение уровня глюкозы приводит к снижению секреции инсулина поджелудочной
2. Отсутствие инсулина приведет к изменению направления реакций, нацеленных на создание запаса гликогена, главным образом к остановке дальнейшего синтеза гликогена в печени и предупреждению поступления глюкозы в печень из крови.
3. Отсутствие инсулина активирует фермент фосфорилазу, расщепляющую гликоген до глюкозофосфата.
4. Фермент глюкофосфатаза, ингибируемый инсулином, при отсутствии инсулина активируется и приводит к отщеплению фосфатногорадикала от глюкозы, что позволяет свободной глюкозе вернуться в кровь
Таким образом, печень забирает глюкозу из крови, когда в крови возникает ее избыток в связи с приемом пищи, и возвращает ее в кровь, когда концентрация глюкозы снижается в промежутках между приемами пищи. Обычно около 60% глюкозы пищи запасается таким способом в печени и в последующем возвращается в кровь.
Очень важно, чтобы концентрация глюкозы в крови всегда придерживалась выше критического уровня. Это связано с тем, что мембрана мозговой ткани проницаема для глюкозы без участия инсулина и работа мозга напрямую связана с нормальными концентрациями глюкозы,т.к мозговая ткань питается исключительно глюкозой, поэтому ее низкие концентрации (до 20-50 мг/дл) могут привести к развитию гипогликемического шока, который характеризуется прогрессирующим повышением раздражимости мозга, что ведет к потере сознания, эпилептиформным припадкам и даже коме.
Инсулин обеспечивает синтез и запасание жиров
Инсулин оказывает различные влияния, направленные на запасание жира в жировой ткани. Прежде всего, инсулин повышает использование глюкозы в большинстве тканей, автоматически снижая потребление ими жиров, что функционально обнаруживается как сберегающий жиры эффект. Наряду с этим инсулин обеспечивает синтез жирных кислот. Это действие инсулина особенно демонстративно в случае избыточного потребления углеводов, когда они не могут расходоваться на энергетические нужды и становятся сырьем для синтеза жиров. Этот синтез практически полностью осуществляется в печени, а затем жирные кислоты транспортируются в виде липопротеинов в жировые ткани, где и хранятся.
Дефицит инсулина увеличивает использование жиров для энергетических нужд
Все виды расщепления и использования жиров для обеспечения энергетических потребностей при отсутствии инсулина резко усиливаются. Это наблюдается даже в условиях нормы в промежутках между приемами пищи, когда секреция инсулина минимальна, а тем более — при сахарном диабете на фоне отсутствия секреции
инсулина.
Инсулин обеспечивает синтез и хранение белков.
В течение нескольких часов после еды, когда в крови присутствует чрезвычайно большое количество питательных веществ, не только углеводы и жиры, но и белки могут запасаться в тканях. Для этого нужен инсулин.
1. Инсулин стимулирует поступление многих аминокислот в клетки.
2. Инсулин стимулирует процессы трансляции, что приводит к образованию новых белков.
3. Инсулин увеличивает скорость транскрипции определенных генов в ядре с большим латентным периодом, что приводит к увеличению количества образующейся РНК.
4. Инсулин тормозит катаболизм белков, уменьшая скорость высвобождения аминокислот из клеток, особенно мышечных.
5. В печени инсулин подавляет скорость глюконеогенеза.
Подводя итог, можно сказать, что инсулин обеспечивает образование белка и предупреждает его распад.
Отсутствие инсулина приводит к истощению запасов белка и увеличению аминокислот в плазме.Фактически все процессы запасания белка при отсутствии инсулина приостанавливаются. Распад белков нарастает, синтез прекращается, и большое количество аминокислот сбрасываются в плазму. Концентрация аминокислот в крови значительно повышается, их избыток начинает использоваться на энергетические нужды или как субстрат для глюконеогенеза. Распад аминокислот ведет к увеличению количества мочевины, экскретируемой с мочой. Возникающий дефицит белка является наиболее серьезным проявлением тяжелого сахарного диабета. Он ведет к резкой
слабости наряду с многочисленными нарушениями функций органов.
Инсулин: действие гормона, норма, виды, функции
Инсулин – биологически активное вещество, белковый гормон, который вырабатывается β-клетками островкового аппарата (островки Лангерганса) поджелудочной железы. Оказывает влияние на метаболические процессы всех тканей организма. Главная функция инсулина – снижение уровня глюкозы в крови. Нехватка данного гормона может привести к развитию сахарного диабета.
Молекула инсулина состоит из 2 полипептидных цепей, включающих 51 аминокислотный остаток: А-цепь (содержит 21 аминокислотный остаток) и В-цепь (содержит 30 аминокислотных остатков). Соединяются полипептидные цепи через остатки цистеина двумя дисульфидными мостиками, в A-цепи расположена третья дисульфидная связь.
Благодаря действию инсулина возрастает проницаемость плазматических мембран в отношении глюкозы, активируются основные ферменты гликолиза. Он оказывает влияние на превращение глюкозы в гликоген, происходящее в мышцах и печени, стимулирует синтез белков и жиров. Помимо этого, обладает антикатаболическим действием, подавляя активность ферментов, участвующих в расщеплении гликогена и жиров.
Традиционная или комбинированная инсулинотерапия характеризуется введением смеси препаратов короткой и средней/длинной продолжительности действия в одной инъекции. Она применима при лабильном течении диабета.
В случае, когда β-клетки вырабатывают недостаточно инсулина, развивается сахарный диабет 1-го типа. При диабете 2-го типа ткани и клетки неспособны должным образом реагировать на этот гормон.
Действие инсулина
Инсулин тем или иным образом затрагивает все виды обмена веществ в организме, но, в первую очередь, он участвует в углеводном обмене. Его действие обусловлено усилением скорости транспорта излишка глюкозы через мембраны клеток (за счет активации внутриклеточного механизма, регулирующего количество и эффективность мембранных белков, доставляющих глюкозу). В результате происходит стимулирование инсулиновых рецепторов, а также активируются внутриклеточные механизмы, влияющие на усвоение клетками глюкозы.
Жировая и мышечная ткани являются инсулинозависимыми. При поступлении пищи, богатой углеводами, гормон вырабатывается и вызывает повышение уровня сахара в крови. Когда показатель глюкозы в крови опускается ниже физиологического уровня, выработка гормона замедляется.
Виды действия инсулина на организм:
- метаболическое: повышение усвоения глюкозы и других веществ клетками; активация ключевых ферментов процесса окисления глюкозы (гликолиза); рост интенсивности синтеза гликогена (ускоряется депонирование гликогена путем полимеризации глюкозы в клетках печени и мышц); падение интенсивности глюконеогенеза посредством синтеза в печени глюкозы из различных веществ;
- анаболическое: усиливает абсорбцию аминокислот клетками (чаще всего валина и лейцина); увеличивает транспорт в клетки ионов калия, магния и фосфат-ионов; повышает репликацию дезоксирибонуклеиновой кислоты (ДНК) и биосинтез белка; ускоряет синтез жирных кислот с последующей их этерификацией (в печени и жировой ткани инсулин способствует преобразованию глюкозы в триглицериды, а при его недостатке происходит мобилизация жиров);
- антикатаболическое: угнетение гидролиза белков с уменьшением степени их деградации; уменьшение липолиза, снижающее поступление в кровь жирных кислот.
Инъекции инсулина
Норма инсулина в крови взрослого человека составляет 3–30 мкЕД/мл (до 240 пмоль/л). Для детей младше 12 лет этот показатель не должен превышать 10 мкЕД/мл (69 пмоль/л).
У здоровых людей уровень гормона колеблется в течение дня и достигает своего пика после приема пищи. Цель инсулинотерапии – не только поддержать этот уровень на протяжении всего дня, но и имитировать пики его концентрации, для чего гормон вводят непосредственно перед едой. Доза подбирается врачом индивидуально для каждого пациента с учетом уровня глюкозы в крови.
Базальная секреция гормона у здорового человека составляет около 1 ЕД в час, она необходима, чтобы подавлять работу альфа-клеток, продуцирующих глюкагон, являющийся основным антагонистом инсулина. При приеме пищи секреция усиливается до 1–2 ЕД на 10 г принятых углеводов (точное количество зависит от многих факторов, в т. ч. общего состояния организма и времени суток). Этот перепад позволяет установить динамическое равновесие, обусловленное повышенной выработкой инсулина в ответ на возросшую потребность в нем.
У людей с сахарным диабетом 1-го типа выработка гормона снижена или же отсутствует полностью. В таком случае необходима заместительная инсулинотерапия.
Вследствие перорального приема гормон разрушается в кишечнике, поэтому его вводят парентерально, в виде подкожных инъекций. При этом чем меньше будут суточные колебания уровня глюкозы, тем ниже риск развития различных осложнений сахарного диабета.
При получении недостаточного количества инсулина возможно развитие гипергликемии, если же гормон поступил в избытке, вероятна гипогликемия. В связи с этим к инъекциям препарата следует относиться ответственно.
Снижающие эффективность терапии ошибки, которых следует избегать:
- применение препарата с истекшим сроком годности;
- нарушение правил хранения и транспортировки препарата;
- нанесение спирта на участок для инъекции (спирт оказывает разрушающее действие на гормон);
- использование поврежденной иглы или шприца;
- слишком быстрое извлечение шприца после инъекции (из-за риска потери части препарата).
Традиционная и интенсифицированная инсулинотерапия
Традиционная или комбинированная инсулинотерапия характеризуется введением смеси препаратов короткой и средней/длинной продолжительности действия в одной инъекции. Она применима при лабильном течении диабета. Основным преимуществом является возможность сократить количество инъекций до 1–3 в сутки, однако достичь полноценной компенсации углеводного обмена при таком способе лечения невозможно.
Традиционное лечение сахарного диабета:
- достоинства: простота введения препарата; отсутствие необходимости частого контроля гликемии; возможность проведения лечения под контролем глюкозурического профиля;
- недостатки: необходимость строгого соблюдения диеты, режима дня, сна, отдыха и физических нагрузок; обязательный и регулярный прием пищи, привязанный к введению препарата; невозможность поддержания уровня глюкозы на уровне физиологических колебаний; повышенный риск развития гипокалиемии, артериальной гипертонии и атеросклероза вследствие постоянной гиперинсулинемии, характерной для этого способа лечения.
Комбинированная терапия показана пациентам пожилого возраста в случае сложностей с усвоением требований интенсифицированной терапии, при психических расстройствах, низком образовательном уровне, потребности в постороннем уходе, а также недисциплинированным больным.
Для проведения интенсифицированной инсулинотерапии (ИИТ) пациенту назначается доза, достаточная для утилизации поступающей в организм глюкозы, с этой целью вводятся инсулины, призванные имитировать базальную секрецию, и отдельно препараты короткого действия, обеспечивающие пики концентрации гормона после приема пищи. Суточная доза препарата состоит из инсулинов короткого и длительного действия.
У людей с сахарным диабетом 1-го типа выработка гормона снижена или же отсутствует полностью. В таком случае необходима заместительная инсулинотерапия.
Лечение сахарного диабета по схеме ИИТ:
- достоинства: имитирование физиологической секреции гормона (базальной стимулированной); более свободный режим жизни и распорядка дня у пациентов с использованием «либерализированной диеты» с вариабельностью времени приемов пищи и набора продуктов; улучшение качества жизни больного; эффективный контроль за метаболическими нарушениями, обеспечивающий предотвращение поздних осложнений;
- недостатки: необходимость систематического самоконтроля гликемии (до 7 раз в сутки), потребность в специальном обучении, изменение образа жизни, дополнительные затраты на учебу и средства самоконтроля, повышение склонности к гипогликемиям (особенно вначале ИИТ).
Обязательные условия применения ИИТ: достаточный уровень интеллекта пациента, способность к обучению, умение практической реализации приобретенных навыков, возможность приобрести средства самоконтроля.
Виды инсулина
Медицинский инсулин бывает базальным или болюсным. Базальный действует на протяжении 24 часов, в связи с чем вводится 1 раз в сутки. Благодаря этому удается поддерживать постоянное значение уровня сахара в крови в течение всего времени действия препарата. Пик эффекта у такого инсулина отсутствует. Болюсный, попадая в кровь, вызывает быстрое снижение концентрации глюкозы и используется для коррекции ее уровня при приеме пищи.
Три основных характеристики (профиль действия) гормона инсулин:
- начало действия препарата – время от введения до попадания гормона в кровь;
- пик – период, когда снижение уровня сахара достигает своего максимума;
- общая продолжительность – промежуток времени, в который уровень сахара остается в пределах нормы.
По продолжительности действия препараты инсулина с учетом профиля их действия разделяют на следующие группы:
- ультракороткий: действие непродолжительное, обнаруживается в крови в течение нескольких секунд после инъекции (от 9 до 15 мин), пик эффекта наступает через 60–90 минут, продолжительность действия – до 4 часов;
- короткий: действие начинается через 30–45 мин и длится 6–8 часов. Пик эффективности приходится на 2–4 часа после инъекции;
- средней продолжительности: эффект наступает спустя 1–3 часа, пик – 6–8 часов, продолжительность – 10–14, иногда до 20 часов;
- длительного действия: продолжительность 20–30 часов, иногда до 36 часов, данный вид гормона не имеет пика действия;
- сверхдлительного действия: продолжительность до 42 часов.
При применении инсулина пролонгированного действия могут быть назначены 1–2 инъекции в сутки, короткодействующего – 3–4. Если необходимо быстро скорректировать уровень глюкозы, используются препараты ультракороткого действия, так как они позволяют добиться этого в более короткий срок. Смешанные инсулины содержат гормон и короткого, и пролонгированного действия, при этом их соотношение бывает от 10/90% до 50/50%.
Дифференциация инсулинов по видовому признаку:
- крупного рогатого скота – разница с человеческим составляет 3 аминокислоты (в России не используется);
- свиной – разница с человеческим в 1 аминокислоту;
- китовый – отличается от человеческого 3 аминокислотами;
- человеческий;
- комбинированный – включает экстракты поджелудочных желез разных видов животных (на данный момент уже не применяется).
Жировая и мышечная ткани являются инсулинозависимыми. При поступлении пищи, богатой углеводами, гормон вырабатывается и вызывает повышение уровня сахара в крови.
Классификация по степени очистки гормона:
- традиционный: экстрагируется кислым этанолом, в процессе очистки фильтруется, высаливается и многократно кристаллизуется (данный способ не обеспечивает очистку препарата от примесей других гормонов поджелудочной железы);
- монопиковый: пройдя традиционную очистку, он подвергается фильтрации на геле;
- монокомпонентный: проходит более глубокую очистку с помощью молекулярного сита и ионообменной хроматографии на DEAE-целлюлозе. При данном методе очистки степень чистоты препарата составляет 99%.
Препарат вводится подкожно с помощью инсулинового шприца, шприца-ручки или инсулиновой помпы-дозатора. Наиболее распространено введение шприц-ручкой, менее болезненное и более удобное в применении по сравнению с обычным инсулиновым шприцом.
Инсулиновая помпа преимущественно применяется в США и Западной Европе. К ее достоинствам можно отнести максимально точную имитацию физиологической секреции инсулина, отсутствие необходимости самостоятельно вводить препарат, возможность практически безошибочно контролировать уровень глюкозы в крови. К недостаткам относится сложность устройства, вопрос его фиксации на пациенте, осложнения от постоянно находящейся в теле иглы для подачи дозы гормона. На данный момент инсулиновая помпа является наиболее перспективным устройством для введения препарата.
Кроме того, уделяется особое внимание разработке новых методов инсулинотерапии, способных создавать постоянную концентрацию гормона в крови и автоматически вводить дополнительную дозу при повышении уровня сахара.
Видео с YouTube по теме статьи: